

Benha University

Faculty of Engineering (at Shoubra)

Sheet 5 - Sol

Solve the following Review Problems from Computer Science: An Overview:

- 2.1
a) General purpose registers and main memory cells are small data storage cells in a computer.
b) General purpose registers are inside the CPU; main memory cells are outside the CPU .
- 2.3

Eleven cells
98, 99, 9A, 9B, 9C, 9D, 9E, 9F, A0, A1, and A2.

- 2.4

CD

- 2.5

Program		
Counter	Instruction Register	Memory Ce at 02
02	2211	32
04	3202	32
06	$C 000$	11

- 2.6
x + y + z:
LOAD registers 0,1 , and 2 from memory with x, y, and z respectively. ADD the contents of register 0 to the contents of register 1 leaving the result in register 3. ADD the contents of register 2 to the contents of register 3 leaving the result in register 3. STORE the contents of register 3 into memory.
(2 x) +y :
Rewrite it as $x+x+z$ and repeat the steps above.
- 2.7
a) OR the contents of register 2 with the contents of register 3 and place the result in register 1 .
b) MOVE the contents of register E to register 1 .
c) ROTATE the contents of register 3 four bits to the right.
a) JUMP to the instruction at address 00 if the contents of registers 1 and 0 are equal.
d) LOAD register B with the value (hexadecimal) CD.
- 2.8

4 bits: $2^{4}=16$
6 bits: $2^{6}=64$

- 2.9
a) 2677
b) 1677
c) BA24
d) A403
e)
81 E2
- 2.29

Assume that the instruction is BRXY.
If the pattern in register R is the same as that in register 0 , then change the value of the program counter to XY .

- 2.34

a)	AND	$\begin{aligned} & 111001 \\ & 101001 \\ & \hline \end{aligned}$	b)	AND	$\begin{aligned} & 000101 \\ & 101010 \\ & \hline \end{aligned}$	c)	AND	$\begin{aligned} & 001110 \\ & 010101 \\ & \hline \end{aligned}$	d)	AND	$\begin{aligned} & 111011 \\ & 110111 \\ & \hline \end{aligned}$	e)	OR	$\begin{aligned} & 111001 \\ & 101001 \\ & \hline \end{aligned}$	f)	OR	$\begin{aligned} & 010100 \\ & 101010 \\ & \hline \end{aligned}$
		101001			000000			000100			110011			111001			111110
g)	OR	$\begin{aligned} & 010100 \\ & 101010 \\ & \hline \end{aligned}$	h)	OR	$\begin{aligned} & 101010 \\ & 110101 \end{aligned}$	i)	XOR	$\begin{aligned} & 111001 \\ & 101001 \end{aligned}$	j)	R	$\begin{aligned} & 000111 \\ & 101010 \\ & \hline \end{aligned}$	$\mathrm{k})$	XOR	010000 010101	1)	R	111111
		010101			111111			010000			101101			000101			001010

- 2.38

What would be the result of performing a 4-bit left circular shift on the following bit patterns?
a) 11010
b) 00001111 c$)$
c) 010
d) 001010
e) 10000

